D. Franke*+ and K. Hinz*

Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany.

+ author for correspondence, email:

A total of 11,700 km of multichannel seismic reflection data were acquired during three recent reconnaissance surveys of the wide, shallow shelves of the Laptev and western East Siberian Seas in the Siberian Arctic Ocean. Three seismic marker horizons were defined and mapped in both shelf areas. Their nature and age were predicted on the basis of regional tectonic and palaeoenvironmental events and corroborated using onshore geology. To the north of the Laptev Sea, the Gakkel Ridge, an active mid-ocean ridge which separates the North American and Eurasian Plates, abruptly meets the steep slope of the continental shelf which is curvilinear in plan view. Extension has affected the Laptev Shelf since at least the Early Tertiary and has resulted in the formation of three major, generally north-south trending rift basins: the Ust' Lena Rift, the Anisin Basin and the New Siberian Basin.

The Ust' Lena Rift has a minimum east-west width of 300km at latitude 75N and a Cenozoic infill up to 6 s (twt) in thickness. Further to the NW of the Laptev Shelf, the downthrown and faulted basement is overlain by a sub-parallel layered sedimentary succession with a thickness of 4 s (twt) that thins towards the west. Although this area was affected by extension as shown by the presence of numerous faults, it is not clear whether this depression on the NW Laptev Shelf is continuous with the Ust Lena Rift.

The Anisin Basin is located in the northern part of the Laptev Shelf and has a Cenozoic sedimentary fill up to 5 s (twt) thick. The deepest part of the basin trends north-south. To the west is a secondary, NW-SE trending depression which is slightly shallower than the main depocentre. The overall structure of the basin is a half-graben with the major bounding fault in the east.

The New Siberian Basin is up to 70 km wide and has a minimum NW-SE extentof 300 km. The sedimentary fill is up to 4.5 s (twt) thick. Structurally, the basin is a half-graben with the bounding fault in the east.

Our data indicate that the rift basins on the Laptev Shelf are not continuous with those on the East Siberian Shelf. The latter shelf can best be described as an epicontinental platform which has undergone continuous subsidence since the Late Cretaceous. The greatest subsidence occurred in the NE, as manifested by a major depocentre filled with inferred (?)Late Cretaceous to Tertiary sediments up to 5 s (twt) thick.

 JPG Home (opens in this window)