STRONTIUM ISOTOPE STRATIGRAPHY OF THE ASMARI FORMATION (OLIGOCENE - LOWER MIOCENE), SW IRAN
S. N. Ehrenberg*1, N. A.H. Pickard2, G. V. Laursen1, S.Monibi3,
Z. K. Mossadegh3, T. A. Svånå1, A. A.M. Aqrawi1, J. M. McArthur4
and M. F. Thirlwall5
1 Statoil, N-4035 Stavanger, Norway.
2 Cambridge Carbonates Ltd., Gullvivevägen 5, 756-55 Uppsala, Sweden.
3 Research Institute of Petroleum Industry, National Iranian Oil Company, PO Box1863, Tehran, Iran.
4 University College London, WC1E 6BT London.
5 Royal Holloway University College London, TW20 0EX Surrey.
*author for correspondence, email: SNE@statoil.com
The Asmari Formation has been studied in the subsurface at the Bibi Hakimeh, Marun and Ahwaz oilfields and in an outcrop section from the Khaviz anticline. It consists of approximately 400 m of cyclic platform limestones and dolostones with subordinate intervals of sandstone and shale. The method of Sr-isotope stratigraphy is well suited for dating these strata because of the rapid rate of change of marine 87Sr/86Sr during Asmari deposition (roughly 32-18 Ma) and the common presence of well-preserved macrofossils.
Profiles of age against depth in the four areas show a decrease from higher stratigraphic accumulation rates in the lower Asmari to lower rates in the middle to upper part of the formation. There is also a trend towards less open-marine depositional conditions and increasing early dolomitization and anhydrite abundance above the lower part of the formation. These changes reflect the dynamics of platform progradation across the areas studied, from early deposition along relatively high accommodation margin to slope settings to later conditions of lower accommodation on the shelf top.
Ages of sequence boundaries are estimated from the age-depth profiles at each locality, providing a framework for stratigraphic correlation. Asmari deposition began in early Rupelian time (34-33 Ma) in the Bibi Hakimeh area, when the studied areas to the NW were accumulating basinal marl facies. Progradation of the platform across the Marun and Ahwaz areas took place in mid-Chattian time (27-26 Ma) and somewhat later (26-25 Ma) in the more basinward Khaviz area. Depositional sequences have durations of 1-3 Ma, whereas component cycles represent average time intervals of 100-300 Ky.
Sr analyses of most dolomite, anhydrite and celestite samples plot close to or below the macrofossil age-depth trend for each locality, indicating formation from waters preserving seawater 87Sr/86Sr approximately contemporaneous with or slightly younger than the time of sediment deposition. Local deviations from this trend are interpreted as indicating episodes of seepage-reflux and also a contribution of Sr from non-marine sources during formation of the Gachsaran cap rock anhydrite.