RESERVOIR POTENTIAL  OF  A  LACUSTRINE  MIXED CARBONATE /  SILICICLASTIC  GAS  RESERVOIR:  THE  LOWER  TRIASSIC  ROGENSTEIN IN THE NETHERLANDS

D. Palermo*, T. Aigner,  M. Geluk,  M. Poeppelreiter and K. Pipping

* University of Tuebingen, Institute of Geosciences – Sedimentary Geology, Sigwartstr.10, D-72074 Tuebingen Germany.

author for correspondence, email: denis.palermo@gmx.de

The Lower Triassic Rogenstein Member of the Buntsandstein Formation produces gas at the De Wijk and Wanneperveen fields, NE Netherlands and consists mainly of claystones with intercalated oolitic limestone beds. The excellent reservoir properties of the oolites (f = 20-30%; k = 5-4000 mD) are predominantly controlled by depositional facies. Oolitic limestones are interpreted as the storm and wave deposits of a shallow, desert lake located in the Central European Buntsandstein Basin.

The vertical sequence of lithofacies in the Rogenstein Member indicates cyclic changes of relative lake level. The reservoir rock is vertically arranged in a three-fold hierarchy of cycles, recognised both in cores and wireline logs. These cycles are a key to understanding the distribution of reservoir facies, and are used as the basis for a high-resolution sequence stratigraphic correlation of the reservoir units.

Slight regional-scale thickness variations of the Rogenstein Member (in the order of tens of metres) are interpreted as the effects of differential subsidence associated with the inherited Palaeozoic structural framework. The depositional basin can be subdivided into subtle palaeo-highs and -lows which controlled facies distribution during Rogenstein deposition. Oolitic limestones show their greatest lateral extent and thickest development in the Middle Rogenstein during large-scale maximum flooding.

Potential reservoir rocks (decimetre to metres thick) are present in the NE Netherlands, in particular in the Lauwerszee Trough and the Lower Saxony Basin, where abundant gas shows of 200 - 4000 ppm CH4 have been recorded. Preserved primary porosity is interpreted to be a result of rapid burial in subtle depositional palaeo-lows in this area. The thickest, amalgamated oolite intervals (tens of metres thick) occur in the eastern part of the Central Netherlands Basin. Because of poor reservoir properties, other areas appear to be less promising in terms of Rogenstein exploration potential.

JPG Home (opens in this window)